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Abstract. Many reactive systems are actually Stochastic Processes. Au-
tomatic analysis of such systems is usually very difficult thus typically
one simplifies the analysis task by using simulation or by working on a
simplified model (e.g. a Markov Chain).
We present a Finite Horizon Probabilistic Model Checking approach
which essentially can handle the same class of stochastic processes of
a typical simulator. This yields easy modeling of the system to be anal-
ysed together with formal verification capabilities. Our approach is based
on a suitable disk based extension of the Murϕ verifier.
Moreover we present experimental results showing effectiveness of our
approach.

1 Introduction

Correctness of digital hardware, embedded software and protocols can often
be verified with Model Checking techniques [5,9,14,13,18,26] by modeling such
systems as Nondeterministic Finite State Systems (NFSS).

However, there are many reactive systems that exhibit uncertainty in their
behavior, i.e. which are stochastic systems. Examples of such systems are: fault
tolerant systems, randomized distributed protocols and communication proto-
cols. Typically stochastic systems cannot be conveniently modeled using NFSS.
However they can often be modeled as Stochastic Processes [19].

Unfortunately, automatic analysis of stochastic processes is quite hard, apart
from some noticeable special classes of stochastic processes. For this reason typ-
ically approximated approaches are used. Namely: simulation or model approxi-
mation. Simulation carries out an approximate analysis on the given stochastic
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process. Model approximation carries out an exact analysis on a simplified (ap-
proximated) model of the given stochastic process. For example, Markov Chains
[3,11] can be used to approximate a given stochastic process.

Automatic analysis of Markov Chains can be effectively performed by using
Probabilistic Model Checkers [28,6,17,23,12,25,4,7,8,2,15,27].

Probabilistic Model Checkers have been developed also for some particular
class of Stochastic Processes [10], namely those in which the probability of an
outgoing transition from state s is a function of the sojourn time in state s
(semi-Markov Processes).

Stochastic Simulators [19] typically can handle fairly general stochastic sys-
tems. However, from a simulator we can only get information about the average
behavior of the system at hand, whereas from a model checker we also get infor-
mation about low probability events.

In this paper we focus on Discrete Time Stochastic Processes (SP). Our goal
is to compute the probability that a given SP reaches an error state in at most
k steps starting from a given initial state (Finite Horizon Verification).

We will present an approach and a tool to carry out Finite Horizon Verifi-
cation of a class of SP that is essentially as large as the class of SP that can be
handled by many simulators (e.g. [27,19]). To the best of our knowledge, this is
the first time that such an approach is presented. Our results can be summarized
as follows.

1. We present (Section 3) Probabilistic Rule Based Transition Systems(PRBTS)
and show (Section 4) how PRBTS can be used to model a fairly large class
of Finite State SP (Discrete Time Stochastic Processes). By using finite pre-
cision real numbers as in [21] (and as in any simulator) we can also handle
Discrete Time Hybrid Stochastic Processes, i.e. stochastic processes which
have continuous (i.e. finite precision real) as well as discrete state variables.

2. PRBTS can be used as a low level language to define stochastic systems. This
is useful to separate the task of designing high level languages for system
descriptions from the task of designing Verification Engines. As an example,
we show (Section 5) how a high level Communicating Processes definition of
a stochastic system can be translated, in linear time, into a low level PRBTS
definition of the same system.

3. We show (Section 7) how FHP-Murϕ [22], a suitable disk based extension of
the Murϕ verifier [18], can be used for automatic Finite Horizon Verification
of PRBTS.
Indeed, using FHP-Murϕ, PRBTS can be used as a low level language to
define stochastic systems whereas FHP-Murϕ can be used as a low level
Verification Engine for Finite Horizon Verification of stochastic systems.

4. We show (Section 7) effectiveness of our approach by presenting experimental
results on automatic analysis of two nontrivial stochastic systems using with
FHP-Murϕ.
Our experimental results show that FHP-Murϕ can handle more general
models than state-of-the-art Probabilistic Model Checkers like PRISM [24,2,16]
or TwoTowers [27].
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On the other hand PRISM as well as TwoTowers can verify more general
properties (e.g. all PCTL [12] properties for PRISM) than FHP-Murϕ. In
fact FHP-Murϕ can only handle Finite Horizon Verification.

2 Basic Notation

We give some basic definitions on Finite State/Discrete Time General Stochastic
Processes. For more details on stochastic processes see, e.g., [20].

Definition 1.

1. A Finite State/Discrete Time Stochastic Process (shortened SP in the
following) is a triple X = (S,P, q) where S is a finite set (of states), q ∈ S
is the initial state, Seq(S) is the set of all finite sequences of elements of S,
and P : S × Seq(S) × S → [0, 1] is a transition probability function, i.e. for
all s ∈ S, π ∈ Seq(S),

∑
t∈S P(s, π, t) = 1. (We included the initial state q

in the SP definition to simplify our exposition.)
2. An execution sequence (or path) in the SP X = (S,P, q) is a nonempty

(finite or infinite) sequence π = s0s1s2 . . . where si are states and

P(si, s0 . . . si−1, si+1) > 0

for i = 0, 1, . . .. If π = s0s1s2 . . . we write π(k) for sk, and we write π|k
for the sequence s0s1s2 . . . sk−1. The length of a finite path π = s0s1s2 . . . sk

is k (number of transitions), whereas the length of an infinite path is ∞.
We denote with |π| the length of π. We denote with Path(X , s) the set of
infinite paths π in X s.t. π(0) = s. If X = (S,P, q) we write also Path(X )
for Path(X , q).

3. For s ∈ S we denote with
∑

(s) the smallest σ-algebra on Path(X , s) which,
for any finite path ρ starting at s, contains the basic cylinders { π∈Path(X , s)
| ρ is a prefix of π }. The probability measure Pr on

∑
(s) is the unique

measure with Pr{ π ∈ Path(X , s) | ρ is a prefix of π } = P(ρ) =
∏k−1

i=0 P(ρ(i),
ρ|i, ρ(i+1)) = P(ρ(0), ε, ρ(1)) P(ρ(1), ρ|1, ρ(2)) · · · P(ρ(k−1), ρ|(k−1), ρ(k)),
where k = |ρ| and ε is the empty sequence.

We recall that a Markov Chain is a particular SP, such that the probability
transition function P(s, π, t) actually does not depend on π (“lack of memory”)
and therefore reduces to a Stochastic Matrix (see [3]).

Given a SP, we want to compute the probability that a path of length k
starting from the initial state q reaches a state s satisfying a given boolean
formula φ.If φ models an error condition, this computation allows us to compute
the probability of reaching an error condition in at most k transitions.

Problem 1. Let X = (S,P, q) be a SP, k ∈ N, and φ be a boolean function on S.
We want to compute: P (X , k, φ) = Pr((∃i ≤ k φ(π(i))) | π ∈ Path(X )). That is,
we want to compute the probability of reaching a state satisfying φ in at most
k steps in the SP X (starting from the initial state q).
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Problem 1 can be very difficult both from a computational and from an
analytical point of view [4,6,7]. So, the first task is to single out a (large enough)
class of tractable SP. Moreover, we need to better specify the computational
model we want to use. We introduce this model in Section 3. Then, in Section 4
we will show how we intend to cope with our verification problem.

3 Probabilistic Rule Based Transition Systems

Definition 2. A Probabilistic Rule Based Transition System (PRBTS) S is a
3-tuple (S, Rules, q), where: S is a finite set (of states), q ∈ S and Rules is a
finite set of pairs (p, f), with p being a function from S to [0, 1] and f being a
function from S to S and ∀s ∈ S

∑
(p,f)∈Rules p(s) = 1.

Definition 3. Let S = (S, Rules, q) be a PRBTS. An execution sequence in S
is a nonempty (finite or infinite) sequence π = s0s1s2 . . . where si are states and
for every i = 0, 1, . . . there exists a pair (p, f) ∈ Rules, such that f(si) = si+1
and p(si) > 0.

As expected, to a PRBTS we can univocally associate a Markov Chain. This
can be done as follows.

Definition 4. Let S = (S, Rules, q) be a PRBTS. The Markov Chain Smc =
(S,P, q) associated to S is defined as follows: P(s, t)=

∑
(p,f)∈Ruless.t.f(s)=t p(s)

(taking as 0 summation on an empty set).

Proposition 1. Let S = (S, Rules, q) be a PRBTS. Then, the Markov Chain
Smc associated to S is well defined.

4 From Stochastic Processes to PRBTS

As we discussed in Section 1, we cannot hope to analyze all possible SP. So, we
restrict our analysis to SP such that their transition probabilities depend only
on some fixed characteristics of the process history. We formalize this as follows.

Definition 5. Let the SP X = (S,P, q) be given. We say that X has finite
character n iff there exists an equivalence relation R on Seq(S) of finite index n
(that is with n equivalence classes) such that for every π1, π2 ∈ Seq(S)

if R(π1, π2) then ∀s, t ∈ S. P(s, π1, t) = P(s, π2, t)

Now we show that to a finite character SP X we can associate a PRBTS S,
in such a way that the verification Problem 1 for X can be reduced to that for
S.
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Proposition 2. Let the SP X = (S,P, q) be of finite character n w.r.t. an
equivalence relation R. Let moreover Q0, . . . , Qn−1 be an enumeration of the
equivalence classes of R. Then there exists a PRBTS S = (S1, Rules, q1), such
that:

1. S1 = S × n, where n denotes the set {0, . . . , n − 1};
2. if π is any sequence in Path(X ), such that π ∈ Qi and π1 = πs is in

Qj, where by πs we denote the concatenation of s to the sequence π, and
P(s, π, t) > 0, then
– there exists at least one pair (p, f) in Rules such that f((s, i)) = (t, j)

and p((s, i)) > 0,
–

∑
(p,f)∈Rules s.t.f((s,i))=(t,j) p(s) = P(s, π, t);

3. q1 = (q, i0), where q ∈ Qi0 ;
4. Problem 1 on X with respect to φ can be reduced to compute: P (Smc, k, φ1) =

PrSmc((∃i ≤ k φ1(π(i))) | π ∈ Path(Smc)) where ∀j ∈ n, φ1((s, j)) = φ(s),
that is P (X , k, φ) = P (Smc, k, φ1).

Proof. (Sketch) It is easy to see that a PRBTS S, verifying the required condi-
tions, can be specified from X : simply insert in Rules a suitable pair (p, f) of
functions, for every transition P(s, π, t) > 0, taking into account to choose one
representative for each equivalence class. As an example, given P(s, π, t) > 0
with π ∈ Qi and πs ∈ Qj , set f as the constant function on S1 returning al-
ways (t, j), and set p as the function that returns P(s, π, t) for input (s, i) and
0 otherwise. For the last point, observe that for every such S, the associated
Markov Chain Smc gives rise to essentially the same probability measure of X
on cylinders and therefore on every set. Indeed, given a path π ∈ Path(Smc) the
indexes in π give no information, since they are univocally determined by the
path π itself.

We stress that a PRBTS is always defined by a program of a suitable (e.g.
C-like) programming language. This allows us to specify functions (p, f) ∈ Rules
inside the program as procedures. This makes their formulation parametric and
concise. On the basis of such considerations, we state the following claim:

Claim. A rule based (i.e. PRBTS oriented) approach to SP specification is in
many cases exponentially shorter than a Markov Chain based specification ap-
proach. By a Markov Chain based specification approach we mean any language
requiring in many cases an explicit (i.e. tabular) definition of the stochastic
matrix of the input Markov Chain.

In fact, by comparing the protocol LQS modeled in Section 7.1 (with FHP-
Murϕ, so with PRBTS) with the model of the same protocol in PRISM (that it
is not included here, for space reasons: see [29]), we can see that the former is
much shorter than the latter, since it does not grow with the parameter ITEM Q.

One may wonder whether this is only a problem of language expressiveness.
In a sense, this is not the case, since PRISM needs to store in memory the
complete Markov Chain stochastic matrix. On the opposite, FHP-Murϕ treats
the Markov Chain exactly with the transition rules given in the model and it
does not need to generate all the transition matrix.
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5 From Communicating Stochastic Processes to PRBTS

As an example of usage of PRBTS as a low level definition language for SP, in
this Section we show how the definition of an SP S specified by Communicating
Stochastic Processes can be translated into a suitable PRBTS.

Definition 6. A System of Communicating Stochastic Processes (SCSP) S is
a 4-tuple (n, S,q,R), where:
n is an integer (denoting the number of processes in our system);
S = S1×. . .×Sn is the Cartesian product of finite sets (of states) Si, i = 1, . . . , n;
q = (q1, . . . , qn) ∈ S;
R = 〈R1, . . . ,Rn〉 is a n-tuple of sets Ri i = 1, . . . , n s.t. Ri is a finite set of
pairs (p, f) where p is a function from S to [0, 1], f is a function from S to Si,
and ∀i ∈ {1, . . . , n} ∀s ∈ S

∑
(p,f)∈Ri

p(s) = 1.

In the following we denote with boldface letters (e.g. x) elements of S = S1 ×
. . .×Sn and with xi the i-th component of x. We can define the transition relation
of a SCSP assuming that processes are scheduled with uniform probability (1/n
if we have n processes).

Definition 7. Let S = (n, S,q,R) be a SCSP. The Markov Chain Smc =
(S,P,q) associated to S is defined as follows:
P(s, t) =

∑i=n
i=1

∑
(p,f)∈Ri s.t. (s1,...,si−1,f(s),si+1,...,sn)=t ( 1

n · p(s))
(taking as 0 summations on empty sets).

Essentially PRBTS are (probabilistic) shared variable concurrent programs.
Thus it is not surprising [1] that a SCSP can be transformed into a PRBTS
using a suitable uniform probability scheduler. The following definition shows
how this can be done (e.g. along the lines in PRISM [24]).

Definition 8. Let S = (n, S,q,R) be a SCSP. We denote with Γ (S) the PRBTS
(S,q, Rules) defined as follows: Rules = ∪i=n

i=1 ∪(p,f)∈Ri
{(λx.( 1

n · p(x)), f)}

The following proposition follows immediately from the construction in Def-
inition 8.

Proposition 3. Let S be a SCSP. Then Smc = Γ (S)mc

Remark 1. Note that the PRBTS transformation of a SCSP is not limited to
the case in which the processes are scheduled with a uniform probability. In
fact, it is sufficient to modify Definition 8 in this way: Rules = ∪i=n

i=1 ∪(p,f)∈Ri

{(λx.(s(i) ·p(x)), f)}, where s is a function from {1, . . . , n} to [0, 1] denoting the
scheduling probability of the process i ∈ {1, . . . , n} (obviously, s must be such
that

∑n
i=1 s(i) = 1).
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6 Defining Probabilistic Systems with the Murϕ Verifier

We want to extend the input language of the Murϕ verifier to allow definition
of SP using PRBTS. Since Murϕ input language defines NFSS, our main mod-
ification to Murϕ input language consists of adding transition probabilities to
transition rules.

In this Section we show how we modified Murϕ input language to achieve the
above goal thus defining FHP-Murϕ input language. The length of FHP-Murϕ
finite horizon is passed on the command line to FHP-Murϕ.

6.1 FHP-Murϕ Input Language

We modify Murϕ input language in the following parts: 1. We add a probability
specification to each start state; 2. We change the semantics of rules; 3. We only
allow one invariant to which we add a probability bound.

To handle Discrete Time Hybrid Stochastic Processes it is useful to have
state variables ranging on real numbers. For this reason in the following we
will consider the Murϕ version enhanced with finite precision real numbers, as
described in [21].

To add probabilities in definitions of startstates, we modify the startstate
nonterminal production of the Murϕ language grammar (Chapter 7 of the doc-
umentation [18]) as follows: <startstate> ::=
startstate [<string>] [<realexpr>] [{<decl>} begin] [<stmts>] end
where the expression realexpr must evaluate to a real number in [0, 1], and de-
faults to 1 when it is not specified. If we are given h startstates with probabilities
p1, . . . , ph, then

∑h
i=1 pi has to be 1, or FHP-Murϕ will return an error.

To add probabilities on rules, we modify the semantics of the simplerule
nonterminal production of the Murϕ language grammar (Chapter 7 of the docu-
mentation [18]) as follows. The original production, without priority and fairness
(not modified in our work), was
<simplerule> ::= rule [ <expr> ] ==> [ <decl> begin ] [ stmts ] end.

In FHP-Murϕ, we simply require the expression after the keyword rule (i.e.
expr) to be a real expression valued in [0, 1], instead of a boolean as it is for
Murϕ. FHP-Murϕ does not allow simultaneous use of both boolean and proba-
bility based rules.

The above modification to <simplerule> has a deep impact on Murϕ se-
mantics. In fact, with boolean rules, each state has a set of enabled transitions,
leading to other states; the activation of a rule only depends on its condition
being true or false. In our probabilistic setting, each Murϕ rule defines a pair
(p, f) of the PRBTS being defined.

Finally, we modify the invariant nonterminal production of the Murϕ lan-
guage grammar (Chapter 7 of the documentation [18]) as follows:
<invariant> ::= invariant [ <string> ] <realexpr> <booleanexpr>
where <realexpr> has to be a real valued expression in [0, 1], while
<booleanexpr> has to be a boolean valued expression.
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type real_type : real(4, 10);
var x : real_type;

startstate "init" begin x := 1.0; end;

rule "reset" (x = 0.0? 1.0 : 0.0) ==> begin x := 1.0; end;
rule "beetwen 0 and x" (x > 0.0? x : 0.0) ==> begin x := x/10; end;
rule "beetwen x and 1" (x > 0.0? 1.0 - x : 0.0) ==> begin x := (1.0 + x)/2.0; end;

invariant "never reaches 0.0" 0.0 (x != 0.0)

Fig. 1. An example of FHP-Murϕ input file

In FHP-Murϕ the invariant statement invariant p γ requires that with
probability at least p the following holds: “all states reachable in at most k steps
from an initial state satisfy γ” (k is FHP-Murϕ horizon).

This is equivalent to say that the probability of reaching in at most k steps
from an initial state a state not satisfying γ is less than (1 − p).

6.2 A Toy Example

Consider the SP S defined as follows. Initially S is in state 1. If S is in a state
x > 0, then with probability x S moves to state x/10, and with probability
(1 − x) S moves to state (1 + x)/2. If S is in state 0 then S deterministically
moves to state 1. In Fig. 1 we give the FHP-Murϕ definition for S.

The FHP-Murϕ invariant in Fig. 1 requires that, with probability at least
0.0 (i.e. always), in all the states, that are reachable in at most k transitions
(horizon), x 
= 0 holds. That is, the probability that we reach, within horizon k,
state 0, is less than 0. That is, state 0 is not reachable in S.

From definition of S should be quite clear that indeed state 0 is not a reach-
able state for S. However, since we are using finite precision real numbers, state
0 may be reached because of numerical approximations.

In Fig. 1, since the precision of x is 10−9 (with this precision, we have 10−10 =
0), we will reach the state 0 if the horizon is a k ≥ 10. For example, if k = 10,
then the probability to reach state 0 is 10−45.

7 Two Protocols in FHP-Murϕ

In this Section we show how FHP-Murϕ (Finite Horizon Probabilistic Murϕ)
[22], a suitable disk based extension of the Murϕ verifier [18], can be used for
automatic Finite Horizon Verification of PRBTS.

More specifically, we give two examples of our approach describing the be-
havior of two different queueing systems, showing their implementation in FHP-
Murϕ and sketching why they are more naturally described in FHP-Murϕ than
in PRISM.

Both examples describe queue systems with a certain probability that an
element in the queue decides to leave its slot without having being served. This
results in an error state.
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7.1 A Length-Based Queue System

The first system models a “Length-Based” Queue System (LQS in the following),
and it has the dynamics described below. In a generic state s, the following moves
are allowed:

1. An enqueue operation. This operation is possible only if the queue is not
full;

2. A dequeue operation. This operation is possible only if the queue is not
empty;

3. Each element in the queue can leave its slot (this results in an error state);
4. The system may remain in the same state s.

The probabilities of the preceding moves are as follows. Let n be the number
of queue slots. Suppose that, in state s, h operations are allowed. We have that
1 ≤ h ≤ 3 + n, since each of the at most n elements in the queue can go in an
error state. Then the probability of the first two moves (if they are allowed) is
1
h . The probability that a queue element i enters an error state is 1−e−j

h , where
j is the number of elements preceding i in the queue (i.e. the number of dequeue
operations that i must wait for before it is its turn). This means that the more
elements preceding i, the higher the probability that i leaves the queue. Finally,
the probability that no operation is performed is the complement to 1 of the
sum of the other defined probabilities.

The implementation of such a system in FHP-Murϕ is quite simple. The
queue is modeled with a circular array managed by two pointers, head and
tail. For each slot in the queue, we memorize if it is in a correct state or in an
error state (i.e. the element has left).

In Figure 2 we show the two main functions, prob trans and make trans,
and how they are called by the rule ‘‘main’’.

Function prob trans returns the outgoing probabilities from the current
state s. The parameter i is needed to identify which of the moves allowed in
s is the one to be calculated. Note that the function 1−e−j

h , where j is the num-
ber of elements preceding an element in the queue, is calculated by the function
prob err.

Function make trans changes state s so as to generate a next state. It uses
the parameter i in the same manner as prob trans.

The ruleset in Figure 2 calls the rule ‘‘main’’ with the different values
for the variable i which are needed in functions prob trans and make trans.

Finally, the invariant to be checked states that the probability of the event
“for all states s that are reachable in a finite number of steps k, s is not an error
state” must be at least 0, where k is a parameter of the verification. Having set
the probability to be p ≥ 0 (which is always true) forces FHP-Murϕ to always
reach the horizon k (if we had set it to be p ≥ γ, with 0 < γ ≤ 1, the visit would
have stopped when p had become less than γ).
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function prob_trans(i : trans_possib_type) : real_type; begin
tmp := 0; /* number of moves except enqueue and dequeue */
trans_possib := 1; /* total number of possible moves */
calc_trans_possib(trans_possib, tmp);
if (i >= trans_possib) then return 0.0;

/* i ranges on the max transitions number,
whilest they are not always all possible */

else
if (i < tmp) then return 1.0/trans_possib;
else if (i = trans_possib - 1) then return 1.0/trans_possib - sum_prob_prec();
else return prob_err(i - tmp)/trans_possib;
endif; endif; endif; end;

procedure make_trans(i : trans_possib_type); begin
/* the first part is the same as prob_trans */
tmp := 0; trans_possib := 1; calc_trans_possib(trans_possib, tmp);
if (i<trans_possib) then /* now, instead of giving probabilities, moves are done */

if (!queue_empty() & i = 0) then /* dequeue */
q[head] := noerr;
if (head = ITEM_Q - 1) then head := 0;
else head := head + 1; endif;

else if (!queue_full() & (tmp = 1 ? i = 0 : i = 1)) then /* enqueue */
q[tail] := noerr;
if (tail = ITEM_Q - 1) then tail := 0;
else tail := tail + 1; endif;

else if (i != trans_possib - 1) then /* gone away */
q[i - tmp] := err;

endif; endif; endif; endif; end; /* if i = trans_possib - 1 no action is done */

ruleset i : trans_possib_type do /* general rule for the whole system */
rule "main" prob_trans(i) ==> begin make_trans(i); end; end;

invariant "queue ok" 0.0 forall i : queue_range do q[i] != err endforall);

Fig. 2. FHP-Murϕ implementation sketch for LQS

7.2 A Time-Based Server-Queue System

The second system models a “Time-Based” Server-Queue System (TSQS in the
following), and it has the sequent behavior. In a generic state s, there are two
different set of allowed moves. The first set just consists of the enqueue, the
dequeue, the server status change and the null operations, with uniform proba-
bility.

The server status is given by a counter ranging from 0 to MAX COUNT S, mod-
eling the time of service. If the server counter is 0, the server is free, then a
dequeue (on a nonempty queue) can be made. In this case, the server counter
is set to MAX COUNT S. If the server counter is greater than 0, then it is reset to
0 with probability proportional to the current server counter, and it is simply
decremented with a complementary probability.

This models the fact that the higher the time of service, the higher the
probability of returning free.

The second set of moves consists in updating a counter associated to each
element in the queue, modeling the time spent by the element in the queue.
When this counter reaches a given maximum value (MAX COUNT Q), we are in an
error state. The updating phase consist in n + 1 possible transitions, where n
is the number of elements currently in the queue: each of the element counters
can immediately reach MAX COUNT Q with probability directly proportional to
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function prob_trans(i : trans_possib) : real_type;
begin

num_trans_possib := 1; calc_trans_possib(trans_possib);
if (i >= num_trans_possib) then return 0.0;
else /* mod_glob distinguish the two set of moves */

if (mod_glob = 0) then
if (s > 0 & i < 2) then

if (i = 1) then return (s/MAX_COUNT_S)/(num_trans_possib - 1);
else return (1.0 - s/MAX_COUNT_S)/(num_trans_possib - 1);
endif;

else return 1.0/(s > 0? num_trans_possib - 1 : num_trans_possib);
endif;

else
if (i!=num_trans_possib-1) then return (q[slot(i)]/MAX_COUNT)/num_trans_possib;
else return 1.0/trans_possib - sum_prob_prec();
endif; endif; endif;

end;

procedure make_trans(i : trans_possib);
begin

num_trans_possib := 1; calc_trans_possib(trans_possib);
if (i < num_trans_possib) then

if (mod_glob = 0) then
if (s > 0 & i < 2) then s := (i = 1? s - 1 : 0);
else if (!queue_empty() & s = 0 & i < 1) then

. . . . /* dequeue operation */
s := MAX_COUNT_S;

else
if (!queue_full()&(s>0?i<3:(!queue_empty()?i<2:i<1))) then
. . . . /* enqueue operation */
endif; endif; endif;

else
if (i != num_trans_possib - 1) then

/* function slot(i) return the i-th element in the queue */
q[slot(i)] := MAX_COUNT;

endif;
for k : queue_range do

if (in_queue(k) & q[k] != MAX_COUNT) then q[k] := q[k] + 1;
endif; endfor;

/* if i = trans_possib - 1 no action is done */
endif; endif;

mod_glob := (mod_glob + 1)%2; /* switch between the two set of moves */
end;

invariant "queue ok" 1.0
(forall i : queue_range do q[i] != MAX_COUNT endforall);

Fig. 3. FHP-Murϕ implementation sketch for TSQS

the current counter value, while all the other counters are simply incremented.
Moreover, the last possibility is that all counters are simply incremented.

This models the fact that the higher the time spent in queue, the higher the
probability to go away without being served.

Also the FHP-Murϕ implementation of TSQS is simple, and it is sketched
in Figure 3. The data structures are essentially the same as in LQS: the only
modification consists in maintaining a counter (and not a boolean) for each slot,
and in adding a counter to model the server. The structure of the code is the
same as in Figure 2, so we only give functions prob trans and make trans.

Note that both these protocols are more difficult to write in PRISM input
language. In fact, PRISM only allows constant probabilities to be defined on
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ITEM Q Horizon Memory (disk) Visited Time Probability
4 10 0 104 3.900 0.2843699449
4 20 0 264 6.450 0.6043041472
5 10 0 126 3.930 0.3189541147
5 20 0 375 6.790 0.6333385081

Fig. 4. Results for LQS on a INTEL Pentium III 750Mhz with 128MB of RAM. Murϕ
options: -b (bit compression), -c (40 bit hash compaction), -m80 (use 80 MB of RAM).
Memory occupations are in MB, time is in seconds.

ITEM Q MAX COUNT Q MAX COUNT S Horizon Memory (disk) Visited Time Probability
5 3 3 10 0 114 13.090 0.595936214
5 3 3 20 0 518 20.850 0.9432926435
10 20 20 30 0 705081 2243.830 0.7360071576
10 20 20 40 139.810176 20072051 65949.160 0.885392219

>10 > 1 day

Fig. 5. Results for TSCS on a INTEL Pentium III 750Mhz with 128MB of RAM.
Murϕ options: -b (bit compression), -c (40 bit hash compaction), -m200 (use 200 MB
of RAM). Memory occupations are in MB, time is in seconds.

transitions. On the other hand, here we have that the transition probabilities
depends on the current state. Hence, to implement these protocols in PRISM, we
are forced to list the values of the parameters from which they depend (e.g., in
LQS, we have to list all the possible values representing the number of elements
preceding the current one, asking for each of them if it is the correct value [29]),
and then to tabulate, for each of them, the transition probability values. On the
opposite, in FHP-Murϕ we have been able to describe the transition probabilities
in a uniform way.

7.3 Experimental Results

In Figures 4 and 5 we report the results obtained verifying, respectively, LQS
and TSCS with FHP-Murϕ. For each verification we report the values of the
parameters from which the protocol depends (i.e. ITEM Q for LQS, indicating the
number of available slots in the queue, ITEM Q, MAX COUNT Q and MAX COUNT S for
TSCS), the finite horizon of the verification, the memory (on disk), the visited
states, the time required by the verification and the final probability (of violating
the invariant). Observe that, in TSCS, we were able to cope with quite large
numbers of visited states. In fact, being the FHP-Murϕ verification algorithm
disk-based, almost any verification can be performed, if one waits for a suitable
amount of time. This is symbolized by the last row of Figure 5.

8 Conclusions

We presented (Section 3) Probabilistic Rule Based Transition Systems (PRBTS)
and showed (Section 4) how PRBTS can be used to model a fairly large class of
Finite State Discrete Time Stochastic Processes as well as Discrete Time Hybrid
Stochastic Processes (by approximating reals with finite precision real numbers).
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PRBTS can be used as a low level language for Stochastic Verification En-
gines. As an example (Section 5) we showed how a high level definition of a
stochastic system based on Systems of Communicating Stochastic Processes can
be translated into a PRBTS definition.

We showed (Section 7) how FHP-Murϕ [22], a suitable disk based extension
of the Murϕ verifier [18] can be used for automatic Finite Horizon Verification
of PRBTS.

We showed (Section 7) effectiveness of our approach by presenting experi-
mental results on automatic analysis with FHP-Murϕ of two nontrivial stochas-
tic systems. Our experimental results show that FHP-Murϕ can handle more
general models than state-of-the-art Probabilistic Model Checkers like PRISM
[24,2,16] or TwoTowers [27]. On the other hand PRISM as well as TwoTowers
can verify more general properties (e.g. all PCTL [12] properties for PRISM)
than FHP-Murϕ.

Future works include extending our approach to more general properties
than Finite Horizon Verification, e.g. PCTL formulas with unbounded until.
Moreover, it would be interesting to compare our approach with the discounting
theory in [30]. In fact, this approach, where the future becomes less and less
relevant, seems to fit well with a finite horizon point of view.
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